
Fault Tolerance in
APPSPACK

Asynchronous Parallel Pattern Search
for Derivative-Free Optimization

Tamara G. Kolda

Sandia National Labs

Using Pattern Search

Our goal is to solve the unconstrained optimization problem

min f(x) x ∈ <n

without derivative information. Pattern search is a popular
derivative-free method which is most useful when. . .

• The function is expensive to calculate.

• The gradient cannot be calculated.

• Numerical approximation of the gradient is too slow, or the
function values are too noisy to yield reliable gradient
approximations.

We are motivated by engineering optimization applications.

Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous PPS Reduces Idle Time

• Remove synchronization bottleneck

– Different running times for simulations

– Varying processor loads

– Heterogeneous architectures

• Easier to incorporate fault tolerance

– COTS systems

APPS/APPSPACK Collaborators

• Patty Hough

• Virginia Torczon (William & Mary)

• Alton Patrick (Summer Intern)

• Sarah Brown (Summer Intern)

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Asynchronous Parallel Pattern Search

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Engineering Example: Determining

the Characteristics of a Circuit

• Collaborator: Ken Marx (Sandia)

• Variables: inductances, capacitances, diode saturation
currents, transistor gains, leakage inductances, and
transformer core parameters

• Simulation Code: SPICE3

f(x) =
N∑
t=1

(
V SIM
t (x)− V EXP

t

)2
,

x = 17 unknown characteristics

V SIM
t (x) = Simulation voltage at time t

V EXP
t = Experimental voltage at time t

N = Number of time steps (2700)

APPS Dramatically Reduces Idle Time

for the Circuit Simulation Problem

f(x) =
N∑
t=1

(
V SIM
t (x)− V EXP

t

)2
(17 variables)

• Search directions are ± Unit Vectors (34) plus Random

• The variables are bound constrained; i.e., li ≤ xi ≤ ui

Method Procs f(x∗) Function Idle Total

Evals Time Time

APPS 34 26.2 57.5 111.92 1330.55

APPS 50 26.9 50.6 63.22 807.29

PPS 34 28.8 53.0 521.48 1712.24

PPS 50 34.9 47.0 905.48 1646.53

APPS Solution is Faster and More

Accurate than Hand-Tuning

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time

V
ol

ta
ge

Experimental
APPS (17 params, 30 min)
Manual (3 params, 8 hrs)

APPS has Agent and Feval Processes

Host A Host B Host C

Agent 0 Agent 1 Agent 2

Feval

Feval

Feval Feval

• Each host has an Agent, and each agent owns
a subset of the Search Pattern.

• Each agent dynamically spawns Function
Evaluations, and the maximum number of
function evaluations per agent is equal to the
number of search directions it owns.

2-D Search
Pattern

6d1

-d4

?d3

�
d2

q

APPS Distributes Control via Agents

Host A Host B Host C

Agent 0 Agent 1 Agent 2

Feval

Feval

Feval Feval

• Each Agent has a unique integer id, starting with 0 and
numbered consecutively.

• Agents communicate with each other and with any function
evaluations that they own.

• The agents contain the logic of the search, but the bulk of the
computation work is done by the function evaluations.

Agent Information

Agent Alive? HostId TaskId Speed Hostname

0 true 0x40000 0x4006f 1 su1cn1

1 true 0x80000 0x8006e 1 su1cn2

2 true 0xc0000 0xc0068 1 su1cn3

Job Assignment = [0 1 2 0]

• Agent numbers are never re-used.

• The HostId and TaskId are generated by PVM and
are never reused.

• The speeds are used to balance the job assignments.

• The job assignments map search directions (4 in this
example) to agents.

Two Keys to Fault Tolerance

Notify

GCI::notify(MsgTag::F EXIT, ftid);

GCI::notify(MsgTag::AGENT EXIT, agentid);

PVM automatically sends a message with the appropriate flag
when the specified process exits, either successfully or
unsuccessfully. The message body contains the process id.

GCI::notify(MsgTag::AGENT NEW HOST);

PVM automatically sends a message with the appropriate flag if a
new host is added.

GUID (Globally Unique Id)

A two-part identification that is used to differentiate and prioritize
information. The first part of the GUID is the agent id, and the
second part is produced by a counter which increments each time a
new GUID is produced by that agent.

FEVAL Fault Tolerance is Easy

Host A Host A

Spawn & Set Notify

Host A

Send Parameters

Agent 0 Agent 0 Agent 0

Feval Feval

x

Host A

Work

Host A

Receive Result

Host A

Receive Notify

Agent 0 Agent 0 Agent 0

Feval Feval

f(x)

A fault can happen in any step, in which case we set f(x) = +∞.

Agent Failure

1. All the other agents get a notify message containing the TaskId
of the failed agent, and they each update their “Agent
Information” to show that the agent is dead.

2. Each agent deteremines whether or not it is the temporary
master, which is defined to be the agent with the lowest
number.

If Agent 0 fails, then Agent 1 is the temporary master.

Agent Alive? HostId TaskId Speed Hostname

0 false 0x40000 0x4006f 1 su1cn1

1 true 0x80000 0x8006e 1 su1cn2

2 true 0xc0000 0xc0068 1 su1cn3

Job Assignment = [0 1 2 0]

We see that the job assignment must be updated. . .

Temporary Agent Responsibilities

1. Check for convergence.

2. Re-verify which of the agents/hosts are alive.

3. Reset search direction assignments, if necessary.

4. Generate a new GUID for the agent information.

5. Send an update message to all other agents containing the
updated agent information.

Agent Alive? HostId TaskId Speed Hostname

0 false 0x40000 0 1 su1cn1

1 true 0x80000 0x8006e 1 su1cn2

2 true 0xc0000 0xc0068 1 su1cn3

Job Assignment = [1 1 2 2]

Resetting Searches After Update

Host A Host B Host C

Agent 0 Agent 1 Agent 2

Feval

Feval

Feval Feval

Host B Host C

Agent 1 Agent 2

Feval

Feval

Feval

Feval

New Host

Every agent gets a notify message. The temporary master must. . .

1. Re-verify which of the old agents/hosts are alive.

2. Spawn agents on new hosts.

3. Reset search direction assignments, if necessary.

4. Generate a GUID for the agent information.

5. Send initialization message to new agents (including “best”
point and search parameters)

6. Send an update message to old agents.

Agent Alive? HostId TaskId Speed Hostname

0 false 0x40000 0 1 su1cn1

1 true 0x80000 0x8006e 1 su1cn2

2 true 0xc0000 0xc0068 1 su1cn3

3 true 0x100000 0x100004 1 su1cn1

Job Assignment = [1 1 2 3]

Resetting Searches After Update

Host B Host C

Agent 1 Agent 2

Feval

Feval

Feval

Feval

Host A Host B Host C

Agent 3 Agent 1 Agent 2

Feval

Feval

Feval Feval

Sorting Agent Information

Concern: What if multiple agents fail in succession and we receive
multiple agent information updates. How do we know which one to
use?

Solution: The GUIDs and Temporary Master concepts allow us to
sort out the information.

• The first part of the GUID is the agent number. Since the
lowest numbered agent that is alive is the temporary master,
we know that a higher first part of the GUID indicates a more
recent message.

• The second part of the GUID is produced by a counter, so we
know that the higher the counter, the more recent the
information.

APPSPACK is Fault Tolerant!

Circuit Simulation Example: The “fault” versions have a
failure in the simulation or agent every 30 seconds.

Method Initial f(x∗) Total

Procs Time

APPS 34 26.2 1330.55

APPS 34-faults 27.8 1618.46

PPS 34 28.8 1712.25

APPS 50 26.9 807.29

APPS 50-faults 54.2 1041.14

PPS 50 34.9 1646.53

There is no version of PPS that supports faults.

Where We Are

• Fault tolerance for function evaluations and agents.

• No dependence on a “master” agent.

• Automatic redistribution of jobs.

What I Didn’t Mention

• Function Value Cache Process

• Surrogate Model Process

What’s Missing?

• Independence from PVM master daemon.

• Fault tolerance in MPI version.

• Disk check-pointing and restart.

• Method to detect that a process is “slow”.

To Obtain APPSPACK. . .

http://csmr.ca.sandia.gov/projects/apps.html

For More Information. . .

Tammy Kolda
tgkolda@sandia.gov

http://csmr.ca.sandia.gov/˜tgkolda/
925-294-4769

APPSPACK is freely available
under the terms of the GNU L-GPL.

